SLOPE FIELD PRACTICE: Free Response
4. Consider the differential equation $\frac{d y}{d x}=2 x-y$.
a. On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated, and sketch the solution curve that passes through the point $(0,1)$

b. Let $y=f(x)$ be the particular solution to the given differential equation with the initial condition $f(0)=1$. Use Euler's method, starting at $x=0$ with two steps of equal size, to approximate $\mathrm{f}(-.4)$. Show the work that leads to your answer.
c. Find $\frac{d^{2} y}{d x^{2}}$ in terms of x and y . Determine whether the approximation found in part (b) is an overestimate or underestimate. Justify your answer.
5. Consider the differential equation $\frac{d y}{d x}=\frac{y-1}{x^{2}}$, where $x \neq 0$.
a) On the axis provided, sketch a slope field for the given differential equation at the nine points indicated.

b) Find the particular solution $y=f(x)$ to the differential equation with the initial condition $f(2)=0$.
c) For the particular solution $\mathrm{y}=\mathrm{f}(\mathrm{x})$ described in part (b), find $\lim _{x \rightarrow \infty} f(x)$.

